Raman/IR Spectroscopy of CCl4 and CHCl3 Lab Report

This sheet should serve as a very general guide for this final lab report. You have spent a semester writing reports for J. Phys. Chem. G. and are familiar with the requirements. This guide lists some items I'd include in the results and discussion section of the report; there are likely some things on in this list that should be included as well.

Results:

- 1. IR and Raman spectra
- 2. Table including peak position (in cm⁻¹ or rel. cm⁻¹), peak identification ($v_{\#}$), intensities, and literature values
- 3. Normal modes (assigned to the peaks) for both CCl₄ and CHCl₃ (Note: there are 4 modes for CCl₄ but 6 for CHCl₃). Draw out the modes (as in Table 1 of the handout) and assign them a υ_#.

Discussion:

- 1. Use the valence force model to find k and k_{δ}/ℓ^2 and determine if the stretchstretch, stretch-bend and bend-bend interactions are important terms in potential energy of CCl₄ and CHCl₃.
- 2. Compare and contrast the IR and Raman spectra for both CCl₄ and CHCl₃
- 3. Compare and contrast the two Raman spectra (i.e., compare CCl₄ and CHCl₃)
- 4. Error sources and any differences between the literature values and experimental (remember we only looked at the Stokes lines)
- 5. Discussion on overlap of v_3 and $v_1 + v_4$

Some good literature sources/resources:

- 1. NIST webbook (type in compound name/formula & find vibrational energy link)
- 2. SDBS (spectral database)... easiest way to access is to google SDBS
- 3. Gundogdu, K., et al., *J. Chem. Phys.* 2006, **125**, pg. 174503. (This doesn't have values for CHCl₃ or CCl₄, but does identify the normal modes of CDCl₃ which may be helpful as you assign the normal modes of CHCl₃.)
- 4. I've run a calculation for CHCl₃ on WebMO. To see the results, log-in to WebMO using the username: pchem and password: compute. Look for the job with CHCl₃ in the title. You can use this to aid you in assigning the normal modes to your spectra.